[HNOI2002]公交车路线
[HNOI2002]公交车路线
这题和没有一样。
直接按照题意建立转移矩阵即可。
笔者的答案矩阵是:
$$
\left[
\begin{matrix}
f_{A} & f_B & f_C & \dots & f_H
\end{matrix}
\right]
$$
其中 $f_i$ 表示经过了 $n$ 次操作从 $A$ 走到 $i$ 的方案数。
不妨设转移矩阵为 $G$。那么对于一个 $i \to j$ 的情况对应到转移矩阵中就是 $G(i, j)$ 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
   | #include <bits/stdc++.h> using namespace std;
 
  #define Getmod
  #ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif 
  template <typename T> void r1(T &x) { 	x = 0; 	char c(getchar()); 	int f(1); 	for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; 	for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); 	x *= f; }
  template <typename T,typename... Args> inline void r1(T& t, Args&... args) {     r1(t);  r1(args...); }
  #ifdef Getmod const int mod  = 1e3; template <int mod> struct typemod {     int z;     typemod(int a = 0) : z(a) {}     inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}     inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}     inline int mul(int a,int b) const {return 1ll * a * b % mod;}     typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}     typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}     typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}     typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}     typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}     typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}     int operator == (const typemod<mod> &x) const {return x.z == z;}     int operator != (const typemod<mod> &x) const {return x.z != z;} }; typedef typemod<mod> Tm; #endif
 
  const int maxn = 2e5 + 5; const int maxm = maxn << 1;
  int n; struct Matrix {     Tm a[8][8];     Matrix(void) { for(int i = 0; i < 8; ++ i) for(int j = 0; j < 8; ++ j) a[i][j] = 0; }     Matrix operator * (const Matrix &z) const {         Matrix res;         for(int i = 0; i < 8; ++ i) for(int j = 0; j < 8; ++ j) {             for(int k = 0; k < 8; ++ k)                 res.a[i][j] += a[i][k] * z.a[k][j];         }         return res;     } }F, G;
  void ksm(Matrix &res, Matrix x,int mi) {     while(mi) {         if(mi & 1) res = res * x;         mi >>= 1;         x = x * x;     } }
  signed main() {
 
      int i, j;     r1(n);     F.a[0][0] = 1;     for(i = 1; i < 8; ++ i)         G.a[i - 1][i] = G.a[i][i - 1] = 1;     G.a[7][0] = G.a[0][7] = 1;     G.a[4][5] = 0;     G.a[4][3] = 0;     ksm(F, G, n);     printf("%d\n", F.a[0][4].z); 	return 0; }
   |